Strategic Elements of Route Choice for Next Generation Digital Navigation Systems

Thomas J. Pingel
Department of Geography
University of California, Santa Barbara
pingel@geog.ucsb.edu
Context of Research:
Personal, Digital Navigation Systems

- Vehicle or PDA/Smartphone based
- Take into account
 - User’s position (GPS)
 - Construction, traffic, and other obstacles
- Automatic generation of routes that prioritize or consider:
 - Shortest distance
 - Least Time
 - Avoiding Freeways
 - Avoiding Tolls
 - Intermediate waypoints
- Generally offer a single best route
Overall Problem

• Current navigation systems oversimplify the criteria of route selection so that they can provide a single best route based on expressed user preferences.

• Better solution
 – Use stated and revealed preferences
 – Find nearly equivalent routes and present these to the user. Use responses to further calibrate user strategic travel profile
 – Need a way to intelligently classify users’ strategic interests.

• How do environmental spatial ability, attitudes toward risk, and strategic disposition affect the way that individuals choose to navigate?
Preferences and Heuristics as Strategies

• Preferences
 – Shortest distance
 – Least time
 – Fewest turns
 – Straightest path
 – Avoid freeways
 – Aesthetic appeal
 – Avoid left turns
 – Safety
 – Least complex

• Heuristics
 – Choose initially long straight segments (ISS) (Bailenson et al., 2000/2002)
 – Choose path with least angular deviation from target (Hochmair and Frank, 2000)
 – Move to regions containing target as soon as possible (Wiener and Mallot, 2003)
Other types of wayfinding strategies

- **Style**
 - Route (Landmark) vs. Orientation (Survey) (Lawton, 1994)

- **Explicit Techniques**
 - Look-back strategy, edge following (Cornell, Heth & Rowat, 1992)

- **Reliance on external aids**
 - Maps or knowledge (Hutchins, 1995; Ishikawa et al., 2008)
 - Digital vs. analog

- **Task-related**
 - Search vs. Access (Passini, 1992)
Questionnaire Development

- $n = 101$
- Environmental Spatial Ability (SBSOD)
 - 15-item (Hegarty et al., 2002)
- Strategists & Risk-takers indices
 - 40-item original questionnaire
 - Factor analysis for reduced set
 - 10 item strategic disposition
 - 5 item risk-taker
- Mode-specific attitudes about risk
- Mode-specific criteria ranking
 - walking
 - driving
Adapting Prospect Theory to Wayfinding

Choose between
- A sure $20
- A 50-50 chance at $40 or nothing

Choose between
- A sure million dollars
- A 50-50 chance at 2 million dollars or nothing

Choose between
- A sure route taking 15 minutes
- An alternative with 50-50 chance of taking 10 or 20 minutes

Variables
- Mode – Walking, Driving, Parking
- Mean – Low, High
- Variability – Probability, Payoff ratio
Means and Variances when Walking and Driving

• Modality matters
 – Mean important when walking
 – Scaled variance important when driving

• Similar outlook within individuals
 – $r(99) = .46$
Route Selection Criteria

- **Ranked Criteria**
 - Separate ranking by mode
 - Fast, safe, attractive, simple, easy
- **Mode Matters**
 - Simple (not complex) more important for driving routes.
 - Related to risk-taker, $r(99) = .34$
Route Asymmetry

Rationale
• People often take a different route from A to B than from B to A.
• Same criteria applied to the same environment
• Perception of the environment is key
 – These different routes appear “better” depending on one’s perspective.
• Golledge (1995) and Bailenson et al. (1998; 2000)

Questions
• What features in the environment tend to result in asymmetry?
• Are some individuals more prone to asymmetry than others? If so, why?
Route Asymmetry Study Design

- Seven legs between four waypoints
- Random order according to several criteria
 - Flagpole / Psychology excluded
 - Five unique connections (Routes)
- Position tracked with GPS
- Only immediate destination known
 - Subjects radioed for the next destination
- Each walk took about 25 minutes
- $n = 65$
Measuring Asymmetry

• Binary (Same / Different)
• Gate Coding
 – Major pathways & obstacles
 – Common sequence length
 • CHLQ, AFKP, etc.
• Some gates (and Routes) showed more asymmetry than others
 – “High-friction” areas
Obstacles and Asymmetry

- Risk-takers move through high-friction sites.
 - Fast potentially relevant
 - But not “simple”
- Symmetry connected to
 - SBSOD
 - Strategist
 - Lawton’s Orientation Strategy
- But not
 - Risk-taking
 - Fast / Simple preferences
Summary

• Mode matters, but
 – Similar criteria, weighted differently
 – Attitudes about risk transcend, but manifest differently

• Attitudes about risk-taking
 – Impact obstacle avoidance
 – Instrumental rationality & the cost of uncertainty

• Strategic thinking & environmental spatial ability
 – Symmetric travelers

• The inclusion of correct classification of individual strategies will lead to improved satisfaction with routes provided by navigation systems.

The author gratefully acknowledges the financial assistance from the UC Transportation Center in the completion of this research.